Koligatif

Gambaran umum sifat koligatif
Gambaran umum sifat koligatif

Sifat  koligatif  larutan  adalah  sifat  larutan  yang  tidak tergantung pada macamnya zat terlarut tetapi semata-mata hanya ditentukan oleh banyaknya zat terlarut (konsentrasi zat terlarut).

Apabila suatu pelarut ditambah dengan sedikit zat terlarut (Gambar 6.2), maka akan didapat suatu larutan yang mengalami:

  1. Penurunan tekanan uap jenuh
  2. Kenaikan titik didih
  3. Penurunan titik beku
  4. Tekanan osmosis

Banyaknya partikel dalam larutan ditentukan oleh konsentrasi larutan dan sifat Larutan itu sendiri. Jumlah partikel dalam larutan non elektrolit tidak sama dengan jumlah partikel dalam larutan elektrolit, walaupun konsentrasi keduanya sama. Hal ini dikarenakan larutan elektrolit terurai menjadi ion-ionnya, sedangkan larutan non elektrolit tidak terurai menjadi ion-ion. Dengan demikian sifat koligatif larutan dibedakan atas sifat koligatif larutan non elektrolit dan sifat koligatif larutan elektrolit.

Penurunan Tekanan Uap Jenuh

Pada  setiap  suhu,  zat  cair  selalu  mempunyai  tekanan tertentu. Tekanan ini adalah tekanan uap jenuhnya pada suhu tertentu. Penambahan suatu zat ke dalam zat cair menyebabkan penurunan tekanan uapnya. Hal ini disebabkan karena zat terlarut itu mengurangi bagian atau fraksi dari pelarut, sehingga kecepatan penguapan berkurang.

Gambaran penurunan tekanan uap
Gambaran penurunan tekanan uap

Menurut Roult :

p = po . XB

keterangan:

p     : tekanan uap jenuh larutan

po  : tekanan uap jenuh pelarut murni

XB  : fraksi mol pelarut

Karena XA + XB = 1, maka persamaan di atas dapat diperluas menjadi :

P = Po (1 – XA)

P = Po – Po . XA

Po – P = Po . XA

 

Sehingga :

ΔP = po . XA

keterangan:

ΔP   : penuruman tekanan uap jenuh pelarut

po    : tekanan uap pelarut murni

XA   : fraksi mol zat terlarut

Contoh :

Hitunglah penurunan tekanan uap jenuh air, bila 45 gram glukosa (Mr = 180) dilarutkan dalam 90 gram air ! Diketahui tekanan uap jenuh air murni pada 20oC adalah 18 mmHg.

rm

Kenaikan Titik Didih

Adanya penurunan tekanan uap jenuh mengakibatkan titik didih larutan lebih tinggi dari titik didih pelarut murni. Untuk larutan non elektrolit kenaikan titik didih dinyatakan dengan:

ΔTb = m . Kb

 

keterangan:

ΔTb = kenaikan titik didih (oC)

m      = molalitas larutan

Kb = tetapan kenaikan titik didihmolal

rm19

(W menyatakan massa zat terlarut), maka kenaikan titik didih larutan dapat dinayatakan sebagai:

rm210

Apabila pelarutnya air dan tekanan udara 1 atm, maka titik didih larutan dinyatakan sebagai :

Tb = (100 + ΔTb) oC

Penurunan Titik Beku

Untuk penurunan titik beku persamaannya dinyatakan sebagai:

rm37

ΔTf = penurunan titik beku

m     = molalitas larutan

Kf     = tetapan penurunan titik beku molal

W     = massa zat terlarut

Mr   = massa molekul relatif zat terlarut

p      = massa pelarut

Apabila pelarutnya air dan tekanan udara 1 atm, maka titik beku larutannya dinyatakan sebagai:

Tf = (O – ΔTf)oC

Tekanan Osmosis

Tekanan osmosis adalah tekanan yang diberikan pada larutan yang dapat menghentikan perpindahan molekul-molekul pelarut ke dalam larutan melalui membran semi permeabel (proses osmosis) seperti ditunjukkan pada.

Menurut Van’t hoff tekanan osmosis mengikuti hukum gas ideal:

PV = nRT

Karena tekanan osmosis = Π , maka :

rm48

π° = tekanan osmosis (atmosfir)
C   = konsentrasi larutan (M)
R   = tetapan gas universal.  = 0,082 L.atm/mol K
T   = suhu mutlak (K)

Tekanan osmosis
Tekanan osmosis
  • Larutan yang mempunyai tekanan osmosis lebih rendah dari yang lain disebut larutan Hipotonis.
  • Larutan yang mempunyai tekanan lebih tinggi dari yang lain disebut larutan Hipertonis.
  • Larutan yang mempunyai tekanan osmosis sama disebut Isotonis.

Seperti yang telah dijelaskan sebelumnya bahwa larutan elektrolit  di  dalam  pelarutnya  mempunyai  kemampuan  untuk mengion. Hal ini mengakibatkan larutan elektrolit mempunyai jumlah partikel yang lebih banyak daripada larutan non elektrolit pada konsentrasi yang sama.

Contoh :

Larutan 0.5 molal glukosa dibandingkan dengan iarutan 0.5 molal garam dapur.

  • Untuk larutan glukosa dalam air jumlah partikel (konsentrasinya) tetap, yaitu 0.5 molal.
  • Untuk larutan garam dapur: NaCl(aq) → Na+(aq) + Cl-(aq) karena terurai menjadi 2 ion, maka konsentrasi partikelnya menjadi 2 kali semula = 1.0 molal.

Yang menjadi ukuran langsung dari keadaan (kemampuannya) untuk mengion adalah derajat ionisasi. Besarnya derajat ionisasi ini dinyatakan sebagai :

α° = jumlah mol zat yang terionisasi/jumlah mol zat mula-mula

Untuk larutan elektrolit kuat, harga derajat ionisasinya mendekati 1, sedangkan untuk elektrolit lemah, harganya berada di antara 0 dan 1 (0 < α < 1). Atas dasar kemampuan ini, maka larutan elektrolit mempunyai pengembangan di dalam perumusan sifat koligatifnya.

  • Untuk Kenaikan Titik Didih dinyatakan sebagai :

rm54

n menyatakan jumlah ion dari larutan elektrolitnya.
  • Untuk Penurunan Titik Beku dinyatakan sebagai :

rm64

  • Untuk Tekanan Osmosis dinyatakan sebagai :

π°  = C R T [1+ α(n-1)]

Contoh :

Hitunglah kenaikan titik didih dan penurunan titik beku dari larutan5.85 gram garam dapur (Mr = 58.5) dalam 250 gram air ! (untuk air, Kb= 0.52 dan Kf= 1.86)

Jawab :

Larutan garam dapur,

rm73

Catatan:

Jika di dalam soal tidak diberi keterangan mengenai harga derajat ionisasi, tetapi kita mengetahui bahwa larutannya tergolong elektrolit kuat, maka harga derajat ionisasinya dianggap 1

Laktanida Antanida

Lantanoid dan aktinoid adalah unsur-unsur transisi blok f, sifat-sifatya berbeda secara signifikan dengan unsur-unsur transisi blok d.  Unsur-unsur ini ditempatkan terpisah dalam tabel periodik untuk menunjukkan bahwa keperiodikan struktur elektroniknya berbeda dengan umumnya unsur lain. Walaupun lantanoid disebut unsur tanah jarang, kelimpahannya di kerak bumi tidak sedikit dan kimia penggunaan sifat-sifat lantanoid yang unik sangat mungkin akan berkembang cepat dalam waktu yang tidak terlalu lama. Aktinoid sangat erat dengan kimia dan energi nuklir.  Karena jumlah unsur superberat “yang disintesis” dalam akselerator sangat kecil, unsur-unsur ini sangat tidak signifikan dalam pandangan kimia terapan.

Lantanoid

Lima belas unsur yang ditunjukkan dalam Tabel 7.1 dari lantanum, La (4f), sampai lutetium, Lu (4f4), merupakan lantanoid.  Ln biasanya digunaan sebagai simbol umum unsur-unsur lantanoid. Walaupun lantanoid, bersama dengan skandium, Sc, dan ytrium, Y, sering disebut unsur-unsur tanah jarang, unsur-unsur ini relatif melimpah di kerak bumi. Kecuali prometium, Pm, yang membentuk isotop stabil, bahkan yang paling kecil kelimpahannya tulium, Tm, dan lutetium, Lu, kelimpahannya sama dengan kelimpahan iodin.  Karena lantanoid memiliki sifat yang sangat mirip dan sukar dipisahkan satu sama lain, di waktu yang lalu unsur-unsur ini belum banyak dimanfaatkan dalam riset dasar dan terapan, jadi nama tanah jarang berasal dari fakta ini. Karena adanya metoda ekstraksi pelarut cair-cair dengan menggunakan tributilfosfin oksida sejak tahun 1960-an, unsur-unsur lantanoid menjadi mudah didapat dan mulai banyak dimanfaatkan tidak hanya untuk riset dasar tetapi juga dalam material seperti dalam paduan logam, katalis, laser, tabung sinar katoda, dsb.

tabel 71

Karena entalpi ionisasi tiga tahap unsur lantanoid cukup rendah, unsur-unsur ini membentuk kation trivalen. Sebagian besar senyawa lantanoid kecuali senyawa Ce4+(4f0), Eu2+(4f7) dan Yb2+(4f14) biasanya lantanoidnya berupa ion Ln3+. Ln3+ adalah asam keras, dan karena elektron f terpendam jauh dan tidak digunakan dalam ikatan, elektron-elektron f ini hampir tidak dipengaruhi ligan. Ada kecenderungan jari-jari atom dan ion lantanoid menurun dengan kenaikan nomor atom, dan fenomena ini disebut kontraksi lantanida. Kontraksi ini disebabkan kecilnya efek perisai elektron 4f, yang menyebabkan inti atom menarik elektron dengan kuat dengan meningkatnya nomor atom.

Kompleks logam lantanoid biasanya berkoordinasi antara 6-12 dan khususnya banyak yang berkoordinasi 8 dan 9. Senyawa organologam dengan ligan siklopentadienil jenis Cp3Ln atau Cl2LnX juga dikenal, semua senyawa ini sangat reaktif pada oksigen atau air

Aktinoid

Lima belas unsur dari aktinium, Ac, sampai lawrensium, Lr, disebut dengan aktinoid (Tabel 7.2). Simbol umum untuk unsur-unsur ini adalah An.  Semua unsur aktinoid bersifat radioaktif dan sangat beracun. Di alam aktinoid yang ada  dalam jumlah yang cukup adalah torium, Th, protaktinium, Pa dan uranium, U. Unsur-unsur tadi diisolasi dari bijihnya dan digunakan dalam berbagai aplikasi. Logam plutonium, Pu, diproduksi dalam jumlah besar dan efisiensi ekonomisnya dan keamanan penggunaannya sebagai bahan bakar reaktor nuklir dan reaktor pembiak saat ini sedang banyak dipelajari.  Untuk unsur yang lebih berat dari amerisium, Am, karena jumlah yang dapat diisolasi sangat kecil dan waktu paruhnya sangat pendek, studi sifat-sifat kimia unsur-unsur ini sangat terbatas.

tabel 7

Proses disintegrasi unsur radioaktif menjadi isotop stabilnya adalah sangat penting dalam kimia nuklir.  Bila jumlah radionuklida yang ada pada suatu waktu tertentu N, jumlah yang terdisintegrasi pada saat tertentu akan sebanding dengan N.  Oleh karena itu, keradioaktifannya

radioaktif

λ adalah konstanta disintegrasi.  Integrasi persamaan ini akan menghasilkan:

integrasi persamaan

N0 adalah jumlah atom pada saat t=0 dan waktu yang diperlukan agar keradioaktifannya dengan menjadi separuh keradioaktifan awal disebut waktu paruh (T ).

waktu paruh

Walaupun aktinoid mirip dengan lantanoid dalam pengisian elektron 5fnya, sifat kimianya tidak seragam dan masing-masing mempunyai sifat yang unik. Promosi elektron dari 5f-6d memerlukan energi yang besar dan contoh senyawa dengan ligan asam π telah dikenal dan orbital 5f, 6d, 7s dan 7p berpartisipasi dalam ikatan. Senyawa trivalen aktinoid umum dijumpai tetapi bilangan oksidasi selain tiga bukan tidak umum. Khususnya torium, protaktinium, uranium and neptunium yang cenderung berbilangan oksidasi +4 atau bilangan oksidasi yang lebih tinggi. Karena keradioaktifannya rendah, torium dan uranium yang ditemukan sebagai mineral dapat ditangani dengan legal di laboratorium biasa. Senyawa seperti ThO2, ThCl4, UO2, UCl3, UCl4, UCl6, UF6, dsb bermanfaat untuk berbagai kegunaan. Khususnya UF6, yang mudah menyublim dan merupakan gas yang cocok untuk difusi gas dan melalui proses sentrifugasi gas dalam preparasi 235U. Torium adalah unsur yang oksofilik mirip dengan lantanoid.

Mekanika Kuantum

Terobosan besar yang dilakukan oleh Bohr dengan memperhatikan aspek gelombang dilanjutkan oleh Schrodinger, Heisenberg dan Paul Dirac, memfokuskan pada sifat gelombang seperti yang dinyatakan oleh de Broglie bukan hanya cahaya saja yang memiliki sifat ganda sebagai partikel dan gelombang, partikel juga memiliki sifat gelombang.

Dari persamaan gelombang Schrodinger, dapat menjelaskan secara teliti tentang energi yang terkait dengan posisi dan kebolehjadian tempat kedudukan elektron dari inti yang dinyatakan sebagai fungsi gelombang. Aspek tersebut dapat dijelaskan dengan teliti dengan memperkenalkan bilangan kuantum utama, azimut dan bilangan kuantum magnetik.

Bilangan kuantum utama diberi notasi dengan huruf (n) bilangan ini menentukan tingkat energi satu elektron yang menempati sebuah ruang tertentu dalam atom, hal ini juga menjelaskan kedudukan elektron terhadap inti atom. Semakin jauh jarak tempat kedudukan elektron terhadap inti semakin besar tingkat energinya. Tingkat energi ini sering disebut juga sebagai lintasan atau kulit lihat Tabel 3.1.

Tabel 3.1. Hubungan antara bilangan kuantum utama (n) dengan kulit

tabel 3.1

Tingkat energi pertama (n = 1), merupakan tingkat energi yang terdekat dari inti atom dengan kulit K.

Tingkat energi kedua (n = 2), dengan kulit L, tingkat energi ketiga (n = 3) dengan kulit M, dilanjutkan dengan tingkat energi berikutnya. Jumlah elektron yang terdapat dalam setiap tingkat energi mengikuti persamaan: ( 2 n2 ) dimana n adalah bilangan kuantum utama sehingga dalam tingkat energi pertama atau kulit K sebanyak 2 (dua) elektron, dan untuk tingkat energi kedua atau kulit L adalah 8 (delapan), untuk kulit M atau tingkat energi ketiga sebanyak 18 elektron dan seterusnya. perhatikan Gambar 3.11.

tingkat energi

Gambar 3.11. Tingkat energi atau kulit dalam sebuah atom dan jumlah elektron maksimum yang dapat ditempati

Bilangan kuantum azimut ( l ) menentukan bentuk dan posisi orbital sebagai kebolehjadian menemukan tempat kedudukan elektron dan merupakan sub tingkat energi. Beberapa kebolehjadian tersebut ditentukan oleh bilangan kuantumnya dan didapatkan berdasarkan tingkat energinya, jumlah bilangan kuantum azimut secara umum mengikuti persamaan : l = n -1, dimana l adalah bilangan kuantum azimut dan n adalah bilangan kuantum utama. Bilangan kuantum azimut memiliki harga dari 0 sampai dengan n-1.

Untuk n = 1, maka, ы = 0, nilai 0 (nol) menunjukkan kebolehjadian tempat kedudukan elektron pada sub tingkat energi s (sharp).

Untuk n = 2, maka ы = 1, maka didapat dua kebolehjadian tempat kedudukan elektron atau sub tingkat energi dari nilai 0 menunjukkan orbital s dan nilai 1 untuk sub tingkat energi p (principle).

Untuk n = 3, maka ы = 2, maka akan didapatkan 3 (tiga) sub tingkat energi yaitu untuk harga 0 adalah sub tingkat energi s, dan harga 1 untuk sub tingkat energi p dan harga 2 untuk sub tingkat energi d (diffuse).

Untuk n = 4, maka ы = 3 maka akan didapatkan 4 (empat) sub tingkat energi yaitu untuk harga 0 adalah sub tingkat energi s, dan harga 1 untuk sub tingkat energi p dan harga 2 untuk sub tingkat energi d (diffuse) dan harga 3, untuk sub tingkat energi f (fundamental). Hubungan bilangan kuantum utama dan bilangan kuantum azimut disederhanakan dalam Tabel 3.2.

Tabel 3.2. Hubungan bilangan kuantum utama dengan bilangan kuantum azimut.

tabel 3,2

Setelah diketahui orbital dari bilangan kuantum azimut, maka dapat ditentukan bagaimana orientasi sudut orbital dalam ruang melalui penetapan bilangan kuantum magnetik yang bernotasi (m) yang didasari oleh bilangan kuantum azimut dan mengikuti persamaan :

m = (-ы, +ы)

Untuk atom dengan harga ы = 0, maka harga m = 0, menunjukkan terdapat 1 buah orbital dalam sub tingkat energi atau orbital s. Untuk harga ы = 1, maka harga m adalah dimulai dari -1, 0, dan +1. Hal ini mengindikasikan Di dalam sub tingkat energi p (ы = 1), terdapat tiga orbital yang dinotasikan dengan px,
py dan pz. Sedangkan untuk harga ы = 3 (sub tingkat energi ketiga atau orbital d) memiliki harga m adalah -2, -1, 0, +1 dan +2, sehingga dalam sub tingkat energi ketiga terdapat lima orbital yaitu, dxy, dxz, dyz, dx2-y2 dan dz2. Gambar 3.12, menunjukkan hubungan bilangan kuantum utama, azimut dan magnetik.

gambar 3.12

Gambar 3.12. Susunan dan hubungan bilangan kuantum utama, azimut dan bilangan kuantum magnetik

Selain tiga bilangan kuantum tersebut, masih terdapat satu bilangan kuantum yang lain yaitu spin. Bilangan ini menggambarkan ciri dari elektron itu sendiri, yang berotasi terhadap sumbunya, dan menghasilkan dua perbedaan arah spin yang berbeda atau berlawanan dan diberi harga +1/2 dan -1/2.
Dengan harga ini dapat kita ketahui bahwa setiap orbital akan memiliki dua elektron yang berlawanan arah. Orbital digambarkan dalam bentuk kotak dan elektron dituliskan dalam bentuk tanda panah. Penggambaran orbital s dan orbital yang masing-masing memiliki satu pasang elektron.

artikel